Hepatocellular Carcinoma

Aaron Wagner MS IV November 12, 2008

Overview

Hepatocellular Carcinoma Overview

Summary of Treatment Options

Radiation Therapy and HCC

Epidemiology

- 6th most common cancer worldwide
- >600,000 deaths worldwide per year
 - >17,000 deaths in USA
- Highest incidences in developing countries
 - Africa, Asia, Melanesia
 - High incidence in Japan
- Male/Female Ratio: ≈2.6

Risk Factors

- Chronic Hepatitis B/C: relative risk ≈ 100
- Chemical Injury
 - ethanol, nitrites, hydrocarbons, pesticides, etc..
- Environmental Toxins
 - aflatoxin, betel nut chewing, contaminated drinking water
- Hereditary Liver Disease
 - Hemochromatosis, Wilsons Disease, Type 1 Glycogen Storage Disease
- Cirrhosis with any of the above causes
 - With any of the above causing repetitive inflammation and scarring

Clinical Presentation

- Early in disease course patients can be asymptomatic
- Symptoms usually due to chronic hepatitis or cirrhosis
 - Fatigue, ascites, jaundice, dilated abd. veins, palmar erythema, gynecomastia, etc.
- Tumor induced symptoms:
 - Hepatomegaly, RUQ pain, obstructive jaundice, splenomegaly

Workup

Imaging: Ultrasound, CT

Labs:

CBC, LFT's, chemistries, coag panel, Hep B/C panel, alpha-feto protein (10-15% false negative rate)

Biopsy may not be required Based off of history and clinical presentation

Staging

Primary Tumor

(T) TX Primary tumor cannot be assessed T0 No evidence of primary tumor

T1 Solitary tumor without vascular invasion T2 Solitary tumor with vascular invasion or multiple tumors none more than 5 cm T3 Multiple tumors more than 5 cm or tumor involving a major branch of the portal or hepatic vein(s) T4 Tumor(s) with direct invasion of adjacent organs other than the gallbladder or with perforation of

visceral peritoneum.

Regional Lymph Nodes

(N) NX Regional lymph nodes cannot be assessed NONo regional lymph node metastasisN1 Regional lymph node metastasis

Distant Metastasis

(M) MX Distant metastasis cannot be assessedM0 No distant metastasisM1 Distant metastasis

STAGE GROUPING

Stage I T1 N0 M0 Stage II T2 N0 M0 Stage IIIA T3 N0 M0 IIIB T4 N0 M0 IIIC Tx N1 M0 Stage IV Any T Any N M1

5 yr Survival by Stage

Stage I50-60%Stage II30-40%Stage III10-20%Stage IV<10%</td>Unresectable (unresponsive)<10%</td>

Treatment Options

Operable	Nonoperable
Partial Hepatectomy	Radiofrequency Ablation
Liver Transplant	Percutaneous Ethanol Ablation
	Transarterial Chemoembolization
	Cryoablation
	Systemic Chemotherapy
	Radiation Therapy
	Radioembolization

Partial Hepatectomy

- Optimal treatment when possible
 - Surgery still considered mainstay therapy
- Patients tend to be highly selected
 - Patient frequently have severe liver disease → surgically suboptimal

Optimal Criteria	Stage 1-2		
Solitary tumor < 5 cm	5 yr OS	Ranges ≈ 40% -	
No vascular invasion		90%	
No portal hypertension	Long term	≈40%	
Well-preserved hepatic function (Child-Pugh	recurrence nee		

Liver Transplant

- Frequently the only surgical option due to liver dysfunction
- Very good outcomes
- Long wait times, unpredictabile
 - MELD scores used for allocation in USA

Optimal Criteria	Stage 1-2		
Solitary tumor < 5 cm	3 yr OS	≈ 75%	
Up to three nodules <3 cm	-		
No vascular invasion			
No regional nodal or distant metasteses			

Percutaneous Ablation

- Injection of ethanol or acetic acid → cellular dehydration → tumor necrosis and fibrosis
- Replaced in popularity by RFA

Optimal Criteria	Child-Pugh Class A, <5cm			
Early stage HCC	Complete	70-75%		
Not resectable	Ablation			
Solitary tumors <3cm	5 yr OS	47%		

Radiofrequency Ablation

- Electrode insertion into lesion → high frequency alternating current → ions attempt to follow current resulting in high frictional energy → cell death
- Less side effects than PEI with better outcomes
- Similar results to surgery in potentially resectable patients

Optimal Criteria	Child-Pugh Class A/B		
Child-Pugh Class A/B	3 yr OS	78-87%	
Solitary tumors <4cm			

Radiofrequency Ablation

Copyright () 2005 Roston Scientific Corporation or its effiliates All rights reserved

Transarterial Chemoembolization

- Intraarterial embolization with lipoidol and chemotherapy (doxorubicin or cisplatin)
- Standard palliative treatment for patients with unresectable HCC
- 4/6 randomized trials failed to show survival benefit over conservative management

Indications

Large unresectable HCC

Prior to resection or RFA

Palliative purposes

Cryoablation

- Intraoperative cryoprobe tumor insertion with alternating freeze/thaw cycles
- Largely replaced by RFA
- High complication rates

Optimal Criteria	Early Stage		
Tumors <5cm	3 yr OS	52-77%	

Radiation

- Radiosensitive cancer (at high doses), but in a very radiosensitive organ; toxicity easily achieved
- Complications of liver failure can make treatment planning difficult
- Whole liver palliative
- Partial liver definitive treatment

Indications

Large unresectable HCC

Symptomatic portal vein thrombosis

Symptomatic jaundice

Part of combined modality treatment

RT – Historical Perspective

- Palliative Use
 - Whole liver radiation
 - Borgelt (IJROBP, 1983)
 - Whole liver RT can relieve symptoms
 - Ascites, anorexia, pain, nausea, vomiting, fever, etc.
 - Russell (IJROBP, 1993)
 - 21 Gy standard dose
 - − Dose escalation 27Gy \rightarrow 30Gy \rightarrow 33Gy
 - No injury at 27Gy and 30Gy → toxicities started developing at 33 Gy

RT – Historical Perspective

• U. of Michigan – Dawson, 2002

- Use of conformality for partial liver treatments
 - Response rates 50-70%
- Approach is to prescribe dose that gives 10% risk of RILD based on NTCP model
 - RILD radiation induced liver disease
 - NTCP normal tissue complication probability

$$NTCP = \phi(t) = 1 / \sqrt{2\pi} \int_{-\infty}^{t} e^{-x^{2}/2} dx$$

- Liver Tolerance Histograms
 - No RILD (Radiation Induced Liver Disease) with mean liver dose
 <31 Gy
 - RILD depends on volume of liver receiving radiation

RT - Constraints

Figure 2 The Lyman-Kutcher-Burman NTCP model displaying 5% iso-NTCP curves, with 80% confidence limits, for patients with primary liver cancer. Effective volume (the organ volume that if irradiated to the prescribed dose uniformly would be associated with the same NTCP as the nonuniform dose distribution) versus normalized dose (prescribed dose normalized to 1.5 Gy bid).¹¹

*Dawson, Seminars in Rad Onc, 2005

Figure 4 Mean liver dose in 1.5 Gy per fraction and biocorrected to 2 Gy per fraction and 3 Gy per fraction versus Lyman NTCP for primary liver cancer.²³

Whole liver

TD 5/5: 30Gy/15 fx TD 50/5: 42Gy/21 fx **2/3 Liver** TD5/5: 50.4Gy/28fx **1/3 Liver** TD5/5: 68.4Gy/38fx

RT – 3D Conformal

Study	n	RT	Added therapy	Objective response rate	Grade ≥3 toxicity rate	In situ recurrence rate	Multifocal recurrence rate	Median survival (mo)	Survival rate
Robertson et al., 19938	11	48–72 Gy	HAI FUDR	100%	16%	_	_	_	_
Yasuda et al., 1999 ⁵⁰	44	36–70 Gy	TAE/PEI	_	_	_			81% (3 y)
Dawson et al., 200073	27	30–90 Gy	HAI FUDR	45%	10%	_	_	11	-
Park et al., 200274;	158	40–60 Gy	TACE (107)	67%	_	7%	34%	10	42% (1 y) 20% (2 y)
Seong et al., 200375		-							
Chia-Hsien Cheng et al., 200152	-26	41-53 Gy	TACE (17)	_	_	11%, 12%	33%, 59%	_	57% (2 y)
Guo et al., 200376	- 76	30–50 Gy	TACE	48%	_	13%	_	19	64% (1 y) 19% (5 y)
Li et al., 2003 ⁷⁷	45	50.4 Gy	TACE	91%	27%	27%	_	24	69% (1 y) 23% (3 y)
Cheng et al., 200414	89	36–66 Gy	TACE (74)	_	_	_	_	_	-
Liu et al., 2004 ⁷⁸	44	40–60 Gy	-	61%	0%	0%	43%	15	61% (1 y) 40% (2 y)
Zeng et al., 2004 ⁷⁹	54	40-60 Gy*	TACE	76%	_	0%	65%	20	72% (1 y) 6% (5 y)
Wu et al., 2004 ⁸⁰	-94	48–60 Gy	TACE	91%	_	3%	_	25	94% (1 y) 26% (3 y)
Ben-Josef et al., 20059	35	40–90 Gy	HAI FUDR	56%	30%	0%	64%	15	
Park et al., 2005 ⁸¹	59	30–55 Gy		66%	0%	24%	_	10	27% (2 y)
Zhou et al., 200682	50	30-54 Gy*	TACE	18%	6%	62%	60%	17	60% (1 y) 28% (3 y)
Mornex et al., 2006 ³³	27	66 Gy	_	92 %	41%	22%	41%	_	-

TABLE 1. Clinical outcomes after photon RT for hepatocellular carcinoma

RT, radiotherapy; HAI, hepatic arterial infusion; FUDR, floxuridine; TAE, transarterial embolization; PEI, percutaneous ethanol injection; TACE, transarterial chemoembolization.

* Hypofractionated regimens used.

*Krishnan, Annals of Surgical Oncolgy, 2008

RT – 3D Conformal

- French RTF1 prospective phase 2 trial (IJROBP, 2006)
 - Investigated high-dose RT for unresectable cirrhotic patients

Methods				
25 Pts, Child-Pugh A/B, small HCC				
Ineligible for curative therapies				
66 Gy in 2 Gy Fx				
Results				
1 yr Local Control: 78% (92% tumor response)				
Grade 4 toxicities in 22% of Child-Pugh B pts only, (already had Grade 3)				

RT – 3D Conformal

*Krishnan, Annals of Surgical Oncology, 2008

RT - IMRT

- Ongoing area of research
 - IMRT improves conformality but at the cost of low dose to normal tissue
 - Conflicting results indicate increased mean liver dose, but decreased complication predictions based off of NTCP
 - No prospective comparisons published to establish efficacy

• Hypofractionation Responses

- Local control ranges 73-93% (Mendez, 2006)
- Ongoing area of research
 - Local experiments with hypofractionated courses

• Dawson (IJROBP, 2007)

- Phase 1 study of SBRT for unresectable HCC
- No RILD observed, minimal toxicity incidence
- Concluded SBRT safe treatment

	Metho	ds
	31 Pts, Child-	Pugh A
	25-57 Gy in 6 I	Fractions
Utilized I	NTCP model for	dose prescription
	Result	S
9	month local co	ntrol: 78%
М	edian Survival:	11 months

- Cardenes (IJROBP, 2008)
 - Dose escalation for primary HCC
 - Concurred SBRT safe treatment
 - 2 pts developed Grade 3 toxicity with high doses
 - » scores of C-P > 8
 - No significant toxicities with dose adjustments

Methods

16 Pts, Child-Pugh A,B

48 Gy (3 Fx) for class A

40 Gy (5 Fx) for C-P >8

• Costantino (IJROBP, 2003)

• SBRT in smaller fraction sizes

Methods
54 Pts, Child-Pugh A,B
30 Gy mean dose
4-9 Gy, 3-12 Fx
Results
31 month local control: 94%
Median Survival: 6.4 months

RT - SBRT

- Studies for Liver Metastases
 - Wulf 2001 24 Lesions
 - 18 month Local Control: 61%
 - Herfarth, Debus 2005 70 pts, (22 Gy, single Fx)
 - 18 month Local Control: 66%
 - University of Colorado 2006, 28 Lesions (60 Gy, 3 Fx)
 - 18 month Local Control: 93%
 - Ongoing study

RT – SBRT vs RFA

• European Liver Tumor Group

Randomized phase III trial comparing RFA vs SBRT

	SBRT	RFA
Local Control (18 months)	61-93%	70-96%

RT – Charged Particles

RT – Charged Particles

- Japan trials with protons (Chiba, Clinical Cancer Research, 2005)
 - Retrospective review over 15 years

RT – Charged Particles

Loma Linda Phase 2 trial (Bush, 2004)

• Preliminary results of proton treatments

RT- Charged Particles

- Ongoing research for re-irradiation in Japan and at Loma Linda
 - Japanese reviews of 27 Child-Pugh A pts with reirradiation with decreased doses indicate efficacy and safety
- Japanese trials with carbon ion RT

Research Experience

- 78 Pts treated with proton therapy
 - Child Pugh A/B
 - 63 Gy in 15 Fx
- Premilinary results from ≈ 3/4 pts
 - 5 yr OS : 24%
 - 5yr Local Control: 71%

Research Experience

- Subgroup Analysis
 - Margin reductions: Globally, locally
 - » No difference in local control rates
 - Decreased doses to 90% volumes
 - » No difference in local control rates
- Liver Function

Questions?